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Abstract Multi-Terminal Binary Decision Diagrams (MTBDDs) are a well accepted

technique for the state graph (SG) based quantitative analysis of large and complex

systems specified by means of high-level model description techniques. However, this

type of Decision Diagram (DD) is not always the best choice, since finite functions with

small satisfaction sets, and where the fulfilling assignments possess many 0-assigned

positions, may yield relatively large MTBDD based representations. Therefore, this

article introduces zero-suppressed MTBDDs and proves that they are canonical rep-

resentations of multi-valued functions on finite (input) sets. For manipulating DDs of

this new type, possibly defined over different sets of function variables, the concept

of partially-shared zero-suppressed MTBDDs and respective algorithms are developed.

The efficiency of this new approach is demonstrated by comparing it to the well-known

standard type of MTBDDs, where both types of DDs have been implemented by us

within the C++-based DD-package Jinc. The benchmarking takes place in the con-

text of Markovian analysis and probabilistic model checking of systems. In total, the

presented work extends existing approaches, since it not only allows one to directly

employ (multi-terminal) zero-suppressed DDs in the field of quantitative verification,

but also clearly demonstrates their efficiency.
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1 Introduction

1.1 Motivation

Decision diagrams (DDs) are directed acyclic graphs for representing finite functions.

Multi-terminal Binary Decision Diagrams (MTBDDs) are among the most efficient

techniques for the state graph (SG) based quantitative analysis of large and complex

systems, commonly described by Markovian extensions of well known description tech-

niques, e.g. Stochastic Process Algebra [7] or Generalized Stochastic Petri Nets [3],

among many others. The success of modelling and evaluation tools such as the prob-

abilistic symbolic model checker Prism [19], the stochastic process algebra tool Caspa

[10] (both based on MTBDDs) or the modelling and analysis tool Smart [24] (based

on multi-valued DDs) is largely due to the efficiency of the employed symbolic data

structures. In the context of such high-level model descriptions, a model’s state com-

monly consists of many state counters, each referring to the state of a local process, to

the current value of a specific process parameter, to the number of tokens in a specific

place of a Petri net, etc.. When making use of MTBDDs in such a setting, each state

counter is encoded in binary form by n bits, leading to a large number of bit posi-

tions filled with zeroes and to a possible small number of encodings of reachable states

with respect to all possible 2n state labellings. In such a setting, MTBDDs are not

the best choice, since finite functions with small satisfaction sets, and where the fulfill-

ing assignments possess many 0-assigned positions, may yield relatively large MTBDD

based representations. The 0-suppressing (0-sup.) reduction rule as introduced in [14]

has the potential to improve such situations, since contrary to MTBDDs one does not

allocate nodes for 0-assigned bit-positions. Thus, this reduction rule helps to reduce

memory space and thus computation time when generating and manipulating symbolic

representations of SGs underlying high-level model specifications, thereby ultimately

enabling the analysis of larger systems. However, there is a significant problem attached

to the usage of Minato’s 0-suppressing reduction rule.

When considering 0-sup. BDDs defined on different sets of variables, the sharing and

manipulation of their graphs turns out to be more complex than in case of standard

BDDs or 0-sup. BDDs with a global set of function variables. The Shanon expansion

[22] requires that for deducing the function represented by a node of a 0-sup. BDD, the

set of function variables must be known since skipped function variables are assumed

to be 0-sup., whereas non-function variables are assumed to have a don’t-care seman-

tics. Consequently, in the presence of multi-rooted DDs [21], as provided by standard

implementations such as Cudd [25] or the recently developed package Jinc [8,18], the

nodes of the 0-sup. DDs lose their uniqueness as soon as the represented functions are

defined on different sets of variables. This is why in a wide range of applications stan-

dard implementations of 0-sup. DDs can not be employed directly. As an example, one

may think of state graph based symbolic quantitative verification of systems, which is

an important part of our research. Since the 0-sup. DD representing the (stochastic

labelled) transition relation and the 0-sup. DD representing the set of states have not

all variables in common, –a function for the transition relation over s and t variables

and a function for the source and target states (or, for example, a vector of rewards

associated with the states), each defined either over the variables of s or t,– standard

implementations of 0-sup. DDs and their algorithms fail to even execute a symbolic

reachability analysis, if not somehow adapted. To solve this problem, this work de-
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velops the concept of partially shared 0-sup. DDs and presents generic algorithms for

efficiently manipulating DDs of that kind.

1.2 Contributions

For the quantitative analysis of systems, this paper extends zero-suppressed Binary

Decision Diagrams (ZBDDs) [14] to the multi-terminal case, thereby obtaining zero-

suppressed Multi-terminal Binary Decision Diagrams (ZMTBDDs). It is shown that

this new type of decision diagram (DD) is a canonical representation for multi-valued

functions on finite (input) sets. But when applying Minato’s 0-suppressing (0-sup.) re-

duction rule, the sharing of the graphs of the DDs is not trivial anymore. For deducing

the function represented by a ZMTBDD’s graph correctly, the set of Boolean input

- or function variables must be known. Thus within (fully) shared DD-environments,

e.g. as provided by Cudd, and in case of different sets of function variables, ZMTBDD-

nodes lose their uniqueness, if they are meant to be defined on differing sets of function

variables. To solve this problem in an efficient way, this paper develops the concept

of partially shared ZMTBDDs (pZMTBDDs), and also introduces new algorithms for

manipulating them. Most importantly, a new variant of Bryant’s well known Apply-

algorithm [4] will be discussed. The newly obtained pZApply-algorithm not only allows

one to implement pZMTBDDs within standard shared DD-environments, such as Cudd

or Jinc, but also supports the application of non-zero-preserving operators, i.e. of op-

erators op where 0 op 0 6= 0 holds (such as nand and nor).

For evaluating the efficiency of the presented approach, the paper compares pZMTB-

DDs to the well-known MTBDDs, where as a matter of fairness we have implemented

both types of DDs within the same DD packages, namely within the C++-based DD-

package Jinc. As demonstrated by various case studies, ZMTBDDs turn out to be su-

perior to MTBDDs in terms of memory - and thus run-time efficiency, when it comes

to the stochastic performance evaluation and/or probabilistic model checking of large

and complex systems.

1.3 Related work

Throughout the last decade, many derivatives of decision diagrams (DDs) have been

developed. For representing stochastic transition relations, the most prominent types

are multi-terminal Binary Decision Diagrams (MTBDDs) [1,6,23] and (multi-terminal)

Multi-valued Decision Diagrams (MDDs) [9,5]. All these data types are extensions of

Binary Decision Diagrams [13,2] for which Bryant [4] designed algorithms for efficiently

manipulating them and keeping them reduced. Variants of these symbolic algorithms

have found their way into contemporary DD-packages providing multi-rooted DDs de-

fined on a global set of function variables. To the best of our knowledge, previous works

[14,15,26] only considered 0-sup. BDD for representing (pure) Boolean functions, where

all 0-sup. BDDs had to be defined on the same set of function variables (!) to make

their manipulating algorithms work properly.

The concept of partially shared DD as developed in this work is not the only solu-

tion to the problem of differing sets of function variables, orthogonal procedures exist.
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Since the meaning of nodes in a shared 0-sup. DD relies on a fixed variable set, one could

either work with different shared 0-sup. DDs for each relevant variable set and trans-

formation algorithms, or work with a single shared pseudo-reduced 0-sup. DD (where

don’t care nodes are allocated at the levels of non-function variables and reducedness

is understood in a level-wise fashion). We did not implement these approaches, since

it must be expected that both alternatives would lead to rather inefficient solutions.

For the first alternative, we expect that the transformation algorithms are very time-

consuming. For the second alternative, we would lose all advantages of suppressing

zeroes, since pseudo-reduced ZDDs agree with pseudo-reduced BDDs. Since the idea

of partially shared DDs also applies to Minato’s standard 0-sup. BDDs, this article

clearly extends previous works and thus ultimately allows one to replace standard

types of reduced ordered DDs by zero-suppressed ones in a wide range of applications.

1.4 Organization

Sec. 2 presents the background material and repeats some usefull concepts with respect

to Boolean functions and their representation. Sec. 3 introduces our new type of DD

and discusses its canonicity aspects. Sec. 4 introduces the concept of partially shared

0-sup. DD and presents generic algorithms for efficiently manipulating them. Sec. 5

describes our implementation of pZMTBDDs within Jinc, as well as the benchmarking

experiments carried out. Sec. 6 concludes the paper.

2 Background material

Let B = {0, 1} be the set of Booleans, N = {0, 1, 2, . . .} the set of naturals, and R
the set of reals and let D be a finite set of function values (here D ⊂ R). Let V

be some global (finite) set of boolean variables on which a strict total ordering π is

defined. The set of variables F := {v1, . . . , vn} ⊆ V employed in a Boolean function

f is denoted as the set of function or input variables of f . Variable vi is essential for

a Boolean function if and only if at least for one assignment to the variables of f it

holds that f(v1, . . . , vi−1, 0, vi+1, . . . , vn) 6= f(v1, . . . , vi−1, 1, vi+1, . . . , vn). Otherwise

the variable vi is not essential. A non-essential variable is also commonly denoted as

don’t-care (dnc) variable.

Canonical representations: Two Boolean functions are equivalent, if and only if their

function values coincide for all inputs. A representation of a Boolean function is called

canonical if each function f has exactly one representation of this type. A representation

is denoted as strongly canonical if two equivalent functions have the same representa-

tion, no matter what their sets of (input or function) variables are. If for identical sets

of essential variables and different sets of (input or function) variables the representa-

tion of two equivalent function is not the same, we denote them as weakly canonical.

In this sense, the canonical disjunctive normal form (CDNF) is a weakly canonical

representation.

For example, consider the two functions f1 := x1x2 + x1(1 − x2) and f2 := x1. Ob-

viously these functions are equivalent. However, since the functions possess different

sets of variables, their CDNFs differ.
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Co-factors and expansion: Let f : Bn → B be a Boolean function and let F be the

set of its variables. Function f can be expanded with respect to its variables. If one

expands only one variable, e.g. vi, one ends up with the two co-factors of f with respect

to vi, namely (a) the one-co-factor f |vi:=1 := f(v1, . . . , vi−1, 1, vi+1, . . . vn) or (b) the

zero-co-factor f |vi :=0 := f(v1, . . . , vi−1, 0, vi+1, . . . , vn). If the variable to be expanded

is clear from the context, we will use the simplified notation f1 and f0 for referring to

the respective co-factors. For all vi ∈ F it holds:

f := vif(v1, . . . , vi−1, 1, vi+1, . . . , vn) + (1 − vi)f(v1, . . . , vi−1, 0, vi+1, . . . , vn)

This so-called Shannon-expansion, introduced in 1938 by Shannon in the context of

switching functions [22], can be recursively applied until all n variables are made con-

stant. The expansion can be applied for an arbitrary subset F ′ ⊆ F , where the notation

f |v ′:=b refers to the sub-function derived from function f by assigning the values con-

tained in the Boolean vector b to the variables in F ′.

Don’t care semantics for variables (dnc-semantics): A variable vk is a dnc variable if

and only if its one- and zero-co-factors are identical. Let function g := f |v ′:=b and let

vk be a dnc variable of g. Applying the Shannon expansion to g with respect to vk one

obtains:

g = (1 − vk)g0 + vkg1 since vk is dnc we have g′ = g0 = g1 and thus:

g = ((1 − vk) + vk)g′

= g′
(1)

Variable vk is therefore a non-essential variable for function g. Thus one does not need

to consider variables of such kind when expanding function g, a subfunction of f . As a

result it is also clear that within a BDD no nodes for such variables need to be allocated

within the graph representing g (c.f. discussion below). At this point it is important to

note that nevertheless vk may still be essential for function f .

0-suppressing semantics for variables (0-sup.-semantics): A variable vk is denoted a

0-sup. if and only if its one-co-factor is the constant zero-function (f1 = 0). Applying

the Shannon expansion to a function f and a 0-sup. variable vk yields:

f = (1 − v)kf0 + vkf1 where f1 = 0 since vk is 0-suppressed

= (1 − vk)f0
(2)

In contrast to the dnc-case, it is obvious that variable vk cannot be ignored.

Binary Decision Diagrams and derivatives: A Binary Decision Diagram (BDD) is a

directed acyclic graph for representing boolean functions [13,2,4]. It consists of a set of

inner nodes and a set of terminal nodes, where the inner nodes are labelled by boolean

variables and terminal nodes carry values from {0, 1}. Each inner node possesses two

children, a 0- and a 1-child, connected to the respective parent node by an incoming

0- or 1-edge. If the variables labelling the inner nodes appear in the same order on

every path one speaks of an ordered BDD. An ordered BDD is reduced (in the stan-

dard, dnc-sense), if no isomorphic subgraphs exist and no dnc-nodes exist (where a

non-terminal node of a BDD is a dnc-node if its 1- and 0-edge point to the same child).

Since the associated variable of such a node is a dnc-variables and thus not essential for
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the respective function f , dnc-nodes can safely be omitted (dnc reduction) [2,4]. Re-

duced ordered BDDs (ROBDDs) are known to be a strongly canonical representation

of Boolean functions. Within a single BDD-environment, each allocated BDD-node

represents therefore a unique Boolean function [21].

A node referring to a 0-sup.-variable is denoted 0-sup. node, its outgoing 1-edge points

to the terminal 0-node. Reducing ordered (isomorphism-free) BDDs by eliminating 0-

sup.-nodes rather than dnc-nodes leads to ZBDDs [14]. A ZBDD is a weakly canonical

representation of a Boolean function [21].

3 Data Structure

We consider n-ary pseudo-Boolean functions, i.e. functions of the type f : Bn 7→D. When shifting the co-domain of standard reduced ordered BDDs from B to D
one obtains MTBDDs. Analogously, by extending reduced ordinary ZBDDs we obtain

ZMTBDDs.

Definition 1 An ordered ZMTBDD is a tuple A = (KNT , KT , F , var, then, else,

value, root) where

(1) KNT is the set of non-terminal (inner) nodes and KT the set of terminal nodes,

where |KT | ≥ 1 and KNT ∩ KT = ∅.

(2) F = {x1, x2, . . . , xn} ⊆ V is a finite (possibly empty) set of Boolean variables. t 6∈ V
is a pseudo-variable, labelling the terminal nodes and solely used for technical

reasons. π is a strict total ordering on the elements of F ∪ {t} such that ∀xi ∈ F :

xi <π t.

(3) var : KNT ∪ KT 7→ F ∪ {t} such that ∀k ∈ KNT ∪ KT : var(k) = t ↔ k ∈ KT .

(4) then : KNT 7→ KNT ∪ KT such that ∀n ∈ KNT : var(n) <π var(then(n)).

(5) else : KNT 7→ KNT ∪ KT such that ∀n ∈ KNT : var(n) <π var(else(n)).

(6) value : KT 7→ D, where D ⊂ R.

(7) root ∈ KNT ∪ KT .

A ZMTBDD is called reduced if the following conditions apply:

(1) (Ismorphism rule) There are no isomorphic nodes; i.e. ∀n, m ∈ KNT :

n 6= m → (var(n) 6= var(m) ∨ then(n) 6= then(m) ∨ else(n) 6= else(m))

and ∀n, m ∈ KT : n 6= m → (value(n) 6= value(m))

(2) (0-suppressing rule) There is no inner node whose then-successor is the terminal

0-node; i.e. 6 ∃n ∈ KNT : then(n) ∈ KT ∧ value(then(n)) = 0.

Let k, l ∈ KNT ∪KT and let F ⊆ V. We now introduce a notation for the set of Boolean

variables which are from F but have a smaller or greater order than var(k) :

Fbefore

k := {xi ∈ F|xi <π var(k)}

Fafter

k := {xi ∈ F|xi π> var(k)}

With the help of this notation, the semantics of a ZMTBDD node with respect to a set

of Boolean variables can be defined as follows:
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Definition 2 The pseudo-Boolean function f(n,F) represented by ZMTBDD-node

n ∈ KNT ∪ KT and variable set F ⊆ V is recursively defined as follows:

If n ∈ KT then

f(n,F) :=

0

@

Y

xi∈F

(1 − xi)

1

A ∗ value(n)

Else, if n ∈ KNT and var(n) 6∈ F , then f(n,F) is undefined.

Else (if n ∈ KNT and var(n) ∈ F)

f(n,F) :=
Y

xi∈Fbefore
n

(1 − xi)

∗
ˆ

var(n) ∗ f(then(n),Fafter

n ) + (1 − var(n)) ∗ f(else(n),Fafter

n )
˜

The last defining equation of Def. 2 is a combination of the Shannon expansion for

Boolean functions [22] and the application of the zero-suppressing rule. According to

Def. 2, the Boolean function represented by the combination of a ZMTBDD node and

a set of Boolean variables is uniquely determined and finally gives that ZMTBDDs are

canonical representations of pseudo Boolean functions, which is shown now.

Weak canonicity of ZMTBDDs is based on the following two theorems and their proofs.

Theorem 1 (Existence) Let F = {x1, x2, . . . , xn} ⊆ V be a set of boolean variables.

For each pseudo-Boolean function f defined on F and given strict total ordering π on

V there exists a ZMTBDD-based representation.

Theorem 2 (Canonicity) Let F = {x1, x2, . . . , xn} ⊆ V be a set of boolean variables

with total strict ordering π on V. Let B and C be reduced ZMTBDDs defined on their

variable sets B = C = F, representing the functions fB and fC, respectively. If fB = fC,

then ZMTBDDs B and C are isomorphic.

Proof of Th. 1 (existence): For simplicity, the proof is for the Boolean case only. Its

extension to the pseudo-Boolean case is straight-forward. The proof is by induction on

the number of variables n = |F|. Without loss of generality we assume the ordering

x1 <π x2 <π . . . <π xn <π t.

Base case: For the case n = 0 (i.e. F = ∅), assume that f is represented by a non-

terminal. This leads to a contradiction, since the function var for that non-terminal

would be undefined. Thus, since f is a constant, it can only be represented by the

terminal carrying the value of f .

Induction step: Assume that the conjecture holds for all (n− 1)-ary Boolean func-

tions defined on {x2, . . . , xn}. We show that then the conjecture also holds for the n-ary

Boolean function f defined on {x1, x2, . . . , xn}. We expand f as

f(x1, . . . , xn) = x1 · f1(x2, . . . , xn) + (1 − x1) · f0(x2, . . . , xn)

where f1(x2, . . . , xn) = f(1, x2, . . . , xn) and f0(x2, . . . , xn) = f(0, x2, . . . , xn). According

to the induction hypothesis, both f1 and f0 have ZBDD representations.

Case 1: If f1 = f0 6= 0 then f1 and f0 are both represented by (k, {x2, . . . , xn}), where

k ∈ KNT ∪ {e}, e ∈ KT and value(e) = 1 (i.e. k can be the terminal one-node). In

this case f can be represented by (m, {x1, . . . , xn}) as shown in Fig. 1(a).
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(a) (b)

(c)

(d)

(m, {x1, . . . , xn})

(m, {x1, . . . , xn})

(k, {x2, . . . , xn})

(k, {x2, . . . , xn})

(0, {x1, . . . , xn})

(l, {x1, . . . , xn})

(l, {x2, . . . , xn})

Figure 1 Constructing ZDDs

Case 2: If f1 = f0 = 0 then f1 and f0 are both represented by (k, {x2, . . . , xn}), where

k ∈ KT and value(k) = 0 (the terminal zero-node). In this case f is also represented

by the zero-node, i.e. by (0, {x1, . . . , xn}) as shown in Fig. 1(b).

Case 3: If f1 6= f0 and f1 6= 0 then x1 is essential for f . If f1 is represented by (k, {x2, . . . , xn})
and f0 is represented by (l, {x2, . . . , xn}), then f can be represented by (m, {x1, . . . , xn})
as shown in Fig. 1(c).

Case 4: If f1 6= f0 and f1 = 0 then x1 is essential for f , but due to the zero-suppressing rule

f is represented by the same node as f0. If f0 is represented by (l, {x2, . . . , xn}),

then f can only be represented by (l, {x1, . . . , xn}) as shown in Fig. 1(d).

Proof of Th. 2 (canonicity): Consider the following two Boolean functions: f1(x1, x2) =

x1x2 + x1(1 − x2) and f2(x1) = x1, which are equivalent. We observe that the corre-

sponding ZBDDs are not the same, as shown in Fig. 2 (a), since their variable sets

are not identical. Therefore ZBDDs are a weakly canonical representation of Boolean

functions. The proof is once again by induction on the number of variables n = |F|.

Without loss of generality we assume the ordering x1 <π x2 <π . . . <π xm <π t with

m ≥ n.

Base case: For the case n = 0 (i.e. F = ∅) fB = fC is constant. Let c be the value

of fB = fC. Then, the root of B as well as C is a terminal node labelled with c.

Induction step: We will now assume that the root nodes of B and C are non-terminal

nodes, each labelled with variable xk, where xk is the first not zero assigned variable

in fB = fC according to the fixed ordering π. Let v be the root of B and w be the

root of C. Let v0 = else(v), v1 = then(v), w0 = else(w) and w1 = then(w) (see

Fig. 2 (b)). For ξ ∈ {0, 1}, as B and C are reduced, we get fvξ = fwξ (with variable set

{xk+1, . . . , xn}). By induction step the sub-ZBDD with root nodes vξ , wξ and variable

set {xk+1, . . . , xn} are isomorphic. Hence, B and C are isomorphic.
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1 1

x1x1

x2

xkxk v

v0 v1

w

w0 w1

(a) (b)

B C

Figure 2 (a) Weak canonical representation (b) Illustrating the proof

In a nutshell, function variables skipped on a path within the ZDD leading to a termi-

nal non-zero node are interpreted as being 0-assigned. Contrary to this, non-function

variables are interpreted as don’t care variables as commonly eliminated within stan-

dard reduced ordered BDDs [2,4]. In the following, only reduced ordered types of DDs

are considered. Since we have defined D ⊂ R, we can combine the values of terminal

nodes by arithmetic operators, but it should be emphasized that the concepts de-

scribed in this paper carry over to more general domains. A ZBDD is a special case of

a ZMTBDD, namely D = B, consequently the concept of partially-shared DDs and the

algorithms introduced next also applies to them. For making the discussion as generic

as possible we will therefore from now on speak of 0-sup. DDs (ZDDs), addressing the

multi-terminal as well as the Boolean type. A concrete case distinction is only made

where necessary.

4 Partially shared ZDDs: Concept and Algorithms

Contemporary DD-packages provide strong canonical representations of (pseudo-) Boolean

functions. Since nodes can then even be shared among different symbolically repre-

sented functions, these packages provide fully shared DD-environments, also known as

multi-rooted DDs [21]. This concept is a major source of the efficiency when it comes to

the manipulation of DDs, since memory requirements are reduced and the likelihood

of finding a pre-computed result in the respective operator-cache is also increased.

However, due to weak canonicity, in the presence of multi-rooted DDs, ZDD-nodes

lose their uniqueness as soon as the represented functions are defined on different sets

of variables. Up to now, this has truly limited the application of 0-sup. DDs. As an

example, one may think of state graph based symbolic quantitative verification of sys-

tems where, as pointed out in the beginning, standard ZDD implementations and their

manipulating algorithms fail to even execute a symbolic reachability analysis, if not

somehow adapted. To solve this problem, this work introduces now the concept of

partially shared ZDDs (pZDDs) and presents generic algorithms for efficiently manip-

ulating DDs of that kind. This allows to implement and manipulate 0-sup. DDs within

(standard) fully shared DD-environments, even though the functions to be represented

may not have the same set of input variables.
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4.1 Concept of partially shared ZDDs (pZDDs)

When working with pZDDs, i.e. with ZDDs having different sets of input variables,

each node must be associated with a set of variables such that one can correctly deduce

the represented function from the graph rooted in that node. Thus, two ZDD-nodes

represent the same function, if not only their subgraphs are isomorphic but also their

sets of variables are identical. Therefore, the notion of equality of pZDD nodes must

be refined. ¿From now on, two nodes are considered as representing the same function

if and only if their sub-graphs are identical, as well as their sets of function variables!

This gives the following rules concerning node equality (where N ,M ⊆ V are the

variable sets associated with nodes n and m):

Definition 3 (1) Non-terminal case (n, m ∈ KNT ):

n ≡ m ⇔
var(n) = var(m),else(n) = else(m),then(n) = then(m) and N = M

(2) Terminal case (n, m ∈ KT ):

n ≡ m ⇔ value(n) = value(m) and N = M

Each time an algorithm tests for node equality, e.g. for deciding whether the recursion

can be terminated or when looking up pre-computed results in the operator’s cache,

the above rules are applicable. Instead of actually storing a set of variables for each

node (or at least a reference to such sets), we do this only for each pZDD object. As

a consequence, within a shared BDD-environment a pZDD object is now uniquely de-

fined by its root node plus its set of (function) variables. When applying now operators

on pZDDs, one not only recurses on the operand DDs, but also iterates over their sets

of variables. At any time a node is accessed, it can be therefore associated with a unique

set of variables. This strategy has the main advantage that it leads to memory and

computation time savings, since a single graph represents now different functions and

the sharing of graphs can be significantly increased.

For exemplification we refer to Fig. 3. Let the set of all variables defined in the shared

DD-environment be denoted VG := {v1, v2, v3}. If the graphs of Fig. 3 (a) and (b)

are both interpreted as standard shared ZDDs, i.e. VZ1 = VG, they represent different

functions, namely the Boolean function fZ1
:= (1 − v1) + v1v3 in case of Fig. 3 (a)

and fZ1
:= (1 − v1)(1 − v2) + v1(1 − v2)v3 in case of Fig. 3 (b). However, if the vari-

ables v1 and v3 are the only function variables for the function represented by node

k1, the graphs of Fig. 3 (a) and (b) are interpreted as the same function. In contrast,

the ZDDs of Fig. 3 (b) and (c) have isomorphic graphs but are intended to represent

different functions. By defining sets of variables for each node, where Vn1 = VG, and

Vk1 = {v1, v3}, and interpreting each (sub-)graph over the respective set, the correct

interpretation is achieved. This allows one to store ZDDs with different sets of function

variables as multi-rooted graphs, as it is common within shared BDD-environments.

This situation is illustrated in Fig. 3 (d) where Z1 and Z2 are represented by different

roots in the same graph. In contrast to node n1 and k1, the nodes n2 and k2, as well

as n3 and k3 can still be merged, since they have isomorphic sub-graphs and identical

sets of function variables. As shown by this example, if one equips each node with a

set of function variables, only a sharing of sub-graphs representing the same function

is achieved. However, if one equips only pZDDs objects with sets of function variables,

the sharing is significantly increased, as illustrated in Fig. 3 (e), but as a result nodes

10
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Figure 3 Allocating multi-rooted pZDDs within standard DD-environments

lose their uniqueness. Therefore, when operating on pZDDs, one must always pass the

set of function variables of the operand DDs as additional argument to the manipulat-

ing algorithms. While iterating jointly on the graphs and sets of function variables of

the operand pZDDs, each node can be associated with a set of function variables.

4.2 Applying binary operators to pZDDs

A symbolic representation of a function f := g op h can be computed by executing the

generic pZApply-algorithm. This algorithm takes a binary operator op, the respective

operand DDs (i.e. their root nodes n and m) and their sets of function variables N

and M as input. For keeping this algorithm as generic as possible, we also make use

of so-called operator functions (op-functions), which steer the recursive behavior of

the pZApply-algorithm, such that it does not have to contain the operator-specific case

distinctions itself. Contrary to existing work, the op-functions must here apply the new

rule for node equality as introduced in Def. 3.

4.2.1 Operator function (op-function)

When working with reduced DDs, one may reach the terminal node of one operand

DD earlier, while the partner DD still needs to be traversed further. In some such

cases, it is possible to terminate the recursion of the traversing algorithms. The called

op-function returns either a node, representing the result of nopm, where n and m are

the nodes passed as arguments, or it returns the empty node ǫ. In the latter case the

ZDD manipulating algorithm must proceed with the recursion, since the conditions for

termination are not satisfied. Since the concept of partially shared ZDDs also applies to

partially shared ZBDDs, we first introduce operator functions for Boolean operators,

which also turn out to be more complex than their arithmetic counterparts.

op-functions implementing binary operators

11



(1) op = ∧: In case of node-equality, the ∧-function may only terminate the recursion

if the current sets of function-variables are identical. In case of reaching a terminal

and non-terminal node, the situation is as follows: Due to the different semantics of

skipped variables – a dnc-semantics for the remaining variables in case of reaching

the terminal 0-node and a 0-sup.-semantics in case of the terminal 1-node – one

may only terminate the recursion, if either one of the nodes is the terminal 0-node,

or one of the input nodes is the terminal 1-node with its associated set of variables

being empty. In case both input nodes are the terminal 1-node, the recursion can

also be terminated, where the terminal 1-node can be returned as result. Otherwise

the recursion must proceed further.

(2) op = ∨: In case of node-equality the ∨-function behaves like the ∧-function. But

when reaching terminal nodes the situation differs. When reaching terminal 1-nodes,

the recursion can only be terminated if also the set of variables matches. In case of

reaching a terminal 0-node the ∨-function can also terminate, but contrary to the

∧-function not the terminal 0-node but the other input node is delivered as result.

(3) op = \ (difference): The \ operator-function steers the pZApply-algorithm in such a

way, that the difference of two binary encoded sets is computed. I.e. the \ operator

function allows us to compute f := g ∧ ¬h with a single (recursive) call to the

pZApply-algorithm, rather than first negating function h and than computing the

conjunction of g and ¬h as it is necessary in case of BDDs. For computing the com-

plement of a function, one solely needs than to evaluate the expression 1-node\h by

calling pZApply(\, 1-node,H, h,H, . . .). Concerning the terminal case distinctions

one may note that analogously to the above op-functions the \ operator-function

only terminates the recursion of the pZApply-algorithm in case of node equality, if

also the set of function variables matches. Contrary to this terminal 0-nodes termi-

nate the recursion anyway, where either f or the terminal 0-node are returned as

result, depending on the fact whether g or f represented the constant 0-function.

–We have found that function ZSetMinus is of great value during the symbolic

computation of the set of reachable states of a high-level model.

op-functions implementing arithmetic operators The op-functions for op ∈ {∗, ÷, +,

−} can be implemented analogously to the Boolean ones. In case both input nodes

are terminal nodes the respective op-function simply needs to return a terminal node

labelled with (value(n)opvalue(m)), –as long as the operation is a valid arithmetic op-

eration, otherwise op-function specific conditions apply. In case of the terminal 0-node

and 1-node one must not necessarily descend to the terminal nodes within both graphs,

a termination of the recursion by returning the partner node as result is often possible.

E.g. in case of the op-functions implementing + and − one simply returns the part-

ner node as result, as the terminal 0-node is the neutral element for + and −. When

computing ÷ and ∗ for two pZDDs and encountering a terminal 1-node in one of the

graphs, the recursion can also be terminated. Since 1 is the neutral element here, the

partner node represents the result, where in case of the division the non-commutativity

must be respected, as well as the error case that the divisor equals 0.

4.2.2 The generic pZApply-algorithm

The basic idea of the algorithm is that for a given pair of nodes (n, m) and their sets

of variables (N ,M), a recursion for each variable v ∈ (N ∪M) is executed. I.e., while

descending the operand pZDDs rooted in node n and m, the algorithm has to stop for

12



Algorithm 4.1 The generic pZApply-algorithm

pZApply(op, n,N , m,M)
(0) node res, e, t;

var vn := min(N ), vm := min(M), vc := min(N ∪M);

/∗ Check terminal condition ∗/
(1) res := op(n,N , m,M);
(2) if res 6= ǫ then return res;

/∗ Check op-cache if result is already known ∗/
(3) res = cacheLookup(op, n,N , m,M);
(4) if res 6= ǫ then return res;

/∗ Remove variables from sets ∗/
(5) N := N \ {vc});
(6) M := M\ {vc});

/∗ (A) No level is skipped ∗/
(7) if var(n) = vc && var(m) = vc then

(8) e := pZApply(op, else(n),N , else(m),M);
(9) t := pZApply(op, then(n),N , then(m),M);

/∗ (B) Skipped a level only in one of the pZDD ∗/
(10) else if var(n) = vc then

(11) e := pZApply(op, else(n),N , m,M);
(12) if vc = vm then

(13) t := pZApply(op, then(n),N , 0-node,M);
(14) else

(15) t := pZApply(op, then(n),N , m,M);
(16) else if var(m) = vc then

(17) e := pZApply(op, n,N , else(m),M);
(18) if vc = vn then

(19) t := pZApply(op, 0-node,N , then(m),M)
(20) else

(21) t := pZApply(op, n,N , then(m),M);

/∗ (C) Skipped a level in both pZDDs ∗/
(22) else

(23) e := pZApply(op, n,N , m,M);
(24) if vn = vc && vm = vc

(25) t := pZApply(op, 0-node,N , 0-node,M);
(26) else if vc = vn

(27) t := pZApply(op, 0-node,N , m,M);
(28) else if vc = vm

(29) t := pZApply(op, n,N , 0-node,M);

/∗ Allocate new node, respecting (ZDD) isomorphism and 0-sup. rule ∗/
(30) res := getUniqueZMTBDDNode(vc, t, e});

/∗ Insert result into op-cache and terminate recursion ∗/
(31) cacheInsert(op, n,N , m,M, res);
(32) return res;
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each such variable v, in order to trigger the required recursion. The behavior depends

hereby on the fact, whether v is 0-sup., not essential or an ordinary variable within the

current path. The pseudo-code of the generic pZApply-algorithm is given as Algo. 4.1.

As input parameters, the algorithm takes the binary operator to be executed, the root

nodes (n, m) of the pZDDs to be combined, and their sets of (function) variables (N ,

M). In lines 1 and 2, the terminal condition is tested with the help of the respective

operator function. If this is not successful, one checks the op-function specific computed

table (op-cache), if the result is already known from a previous recursion (line 3-4).

Note that the sets N and M must also be considered, since the sets of variables are

not stored within the ZDD-nodes themselves. In case the lookup is not successful, the

recursion must be entered:

The pseudo-code of lines 5 and 6 prepares the new sets of variables as required in

the next recursion. The pseudo-code of lines 7-9 handles the ordinary branching in

case no-skipping of variables appeared within the traversed graphs. The code of lines

10-21 covers the case that the current variable vc is a skipped variable exclusively in

one of the graphs. In such a case one executes at first line 11 or 17, for entering the

else-branch of the recursion. Concerning the then-branch, the behavior is more com-

plex. It depends on the circumstances, whether variable vc is a function-variable of the

respective pZDD or it is not. I.e. one either interprets vc as 0-sup.. - or as not essential

variable within the respective graph. In case vc is considered as being 0-sup., line 13

or alternatively line 19 is executed. In case vc is considered as being not essential, one

assumes a dnc-semantics and executes line 15 or alternatively line 21.

Lines 22-29 cover the case that the variable vc is skipped within both graphs. For

the else-branch, the current pair of nodes (n and m) is the pair of children nodes,

since the 0-children of the fictitious nodes being skipped are the current node n and m

themselves (line 23). Concerning the then-branch the following cases must be covered:

(a) the variable is a variable for both graphs: here the standard 0-sup.-branching rules

apply, which means that in both cases the 0-node is the then-child to be recursed on

(line 25); (b) the variable is a non-function variable for one of the graphs and 0-sup.

for the other. Here the branching rules follows a dnc-rule in one case and a 0-sup.-rule

in the other case, which means that in the dnc-case one does not traverse any further,

i.e. one passes the current node into the then recursion. Contrary to this, the case of a

0-sup.-semantics yields a passing of the 0-node into the then recursion (line 27 and 29).

Finally when returning from the recursion, one either newly allocates a new ZDD-node

representing fn
op fm (line 30), or, in case it already exists, simply re-use the respec-

tive node as to be found within the list of allocated nodes with label vc. This result

is then inserted into the op-cache, where also the respective sets of variables must be

provided. Now the algorithm can terminate by passing the obtained node as its result

to the calling function.

It is not difficult to see that such an extensive treatment of all variables as done within

the pZApply-algorithm is sometimes unnecessary. In the following, we therefore identify

special cases for which we describe improved variants of the pZApply-algorithm.

4.2.3 Variants of the pZApply-algorithm

Fully shared ZDDs and zero-preserving op-functions: In case of pZDDs having identical

sets of variables and zero-preserving op-functions (0 op 0 = 0), the pZApply-algorithm
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can be simplified. This simplification yields an algorithm whose recursive behavior

corresponds to the one of Minato’s recursive ZBDD-algorithms [14,15]. The obtained

variant will be denoted as fsZApply-algorithm in the following – as we recently noticed

this variant is also described in [26].

Like Bryant’s original Apply-algorithm and Minato’s original ZBDD-algorithms, this

variant only recurses on variables for which a node is actually allocated. In case a

variable is skipped in one operand, the fsZApply algorithm follows a 0-sup.-rule, which

means when recursing into the else-branch the current node is the next node to be tra-

versed, whereas the then-branch recursion takes the 0-node as argument. The fsZApply-

algorithm can be derived from the pZApply-algorithm by omitting line 5-6, 12, 14-15,

18, 20-21 and 22-29, by adapting the Boolean tests of line 7,10 and 16 accordingly, and

modifying the function calls of line 1,3 and 30,31, such that the sets of variables are

not needed any more. Since the fsZApply algorithm solely recurses on variables where

nodes are actually allocated within the current path, it can only be applied for opera-

tors which are zero-preserving. This stems from the fact that in case of paths leading

to the terminal 0-node skipped variables refer to dnc-nodes, which must be considered

when replacing the function value 0 with a value 6= 0. This is also the reason why

the computation of the complement of pZDDs is much more complex than in case of

non-0-sup. DDs.

Non-shared ZDDs: In case two pZDDs have no variable in common, they can be ma-

nipulated by a specialized pZApply-algorithm which we denote as nsZApply-algorithm.

The simplification is mainly based on the fact that certain case distinctions of the

generic pZApply-algorithm can be omitted. In contrast to the fsZApply-algorithm, the

nsZApply-algorithm still requires to stop for each variable from N ∪M, no matter if it

encounters a node for this variable on the current path or not. This variant is obtained

by simply omitting line 7-9, 12-14, and 18-20 of the pZApply-algorithm.

The pZAnd-algorithm: Again, we consider the computation of f := n op m, where n

and m are the root nodes of the operand DDs and N ,M are the respective sets of

variables. The pZApply and nsZApply-algorithms execute two recursive calls for each

variable v ∈ F := N ∪M. This is less efficient than the original Apply-style algorithms

[4,14,15,26], since the latter algorithms only need to recurse on those variables for

which nodes are actually allocated. In order to achieve the same efficiency, we now

present another variant of the pZApply-algorithm for the special case op ∈ {∧, ∗},
which we denote as pZAnd-algorithm.

When skipping a variable, one assumes a 0-sup.- or a dnc semantics, depending on

whether the associated variable is a variable or not for the respective pZDD. In case

of non- and partially shared ZDDs this led to many case distinctions. If one assumes

now that a variable v is skipped in both pZDDs, the following scenarios appear:

(1) The omission results from different semantics, i.e. in case of the pZDD rooted in

node n the current variable v is assumed to be dnc and in case of the pZDD rooted

in node m it is assumed to be 0-sup. – or the other way round. According to the

Shannon-expansion it follows that n = n1 = n0 and m1
(!)
= 0. This can now be

employed for computing f := n ∗ m as follows:

f = ((1 − v)n0 + v n1) ∗ (v m1 + (1 − v)m0) with m1 = 0

= (1 − v)n0 m0 + 0 with n0 = n it follows: f = (1 − v)n m0
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Thus the representation of function f solely depends on the expansion of (1 −

v) n m0, where the pZDD rooted in node m0 is the current node m itself, according

to the 0-sup.-reduction rule.

(2) The omission results from the same semantics:

(2.a) Under the dnc-semantics v /∈ N ∪M and therefore nothing needs to be done.

(2.b) When the 0-sup.-semantics is applicable, also nothing needs to be done, since

one has:

f = v(0 ∗ 0) + (1 − v)(m0 ∗ n0) = 0 + (1 − v)(m0 ∗ n0),

which is the semantics of a node to be 0-sup.. Consequently, one solely needs to

traverse the 0-children of the two “fictitious 0-sup.-nodes” being skipped, which

are the current nodes m and n themselves.

The above conclusions allow one to significantly simplify the pZApply-algorithm for

op ∈ {∧, ∗}, where the resulting pZAnd-algorithm only stops for variables where actually

nodes are allocated, rather than executing two recursive calls for each variable v ∈

N ∪M. This allows one furthermore to omit the sets of variables, as it was required

in case of the generic pZApply and nsZApply-algorithm. Since the pZAnd-algorithm

implements the same behavior as the fsZApply algorithm, i.e. the algorithm must solely

recurse on variables for which actually nodes are allocated, it can be derived from the

fsZApply algorithm as discussed above.

4.3 The pZAbstract-operator

The abstraction from a variable v is implemented by the pZAbstract-algorithm, called

with a respective op-function. The pZAbstract-algorithm constructs a representation

of the function h := f |v=0op f |v=1, so that variable v is not essential for function h

any more. When eliminating nodes labeled with the variable v or in case v is a 0-sup.

variable on the current path, it may occur that previously distinct (sub-) paths collapse.

In such cases the respective pZApply-algorithm with the binary Boolean operator op has

to be called for computing f |v=0op f |v=1, where in case v is 0-sup. f |v=1 = 0 holds.

Depending on the operator op passed as an argument, the pZAbstract implements

different operations:

(1) In case op ∈ {∨, +} it implements the existential quantification, where the algo-

rithm can also be simplified; One only needs to take care of nodes labeled with

variables to be abstracted from. I.e. contrary to a generic variant, the handling of

0-sup. variables to be abstracted is then not necessary.

(2) In case op ∈ {∧, ∗} the pZAbstract-algorithm implements the universal quantifi-

cation. Contrary to the above setting, a 0-sup. variable to be abstracted from must

be considered on the current path, since f |v=0 ∗ 0 = 0. I.e. one can immediately

terminate the current recursion and return the terminal 0-node as result.

It is straight forward to extend the pZAbstract-algorithm to the case of abstracting

from sets of variables instead of a singe variable.

The pseudo-code of the generic pZAbstract-algorithm is given as Algo. 4.2. It takes

the following arguments as input parameters:

(1) the binary operator op for steering the merging of collapsing paths,
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Algorithm 4.2 The pZAbstract-algorithm

pZAbstract(op,N abs, n,N )
(0) node t, e, res;

/∗ Reached terminal nodes, end of recursion ∗/
(1) if (N = ∅ ‖ N abs = ∅)
(2) then res := n;

/∗ Check op-cache if result is already known ∗/
(3) res := cacheLookup(pZAbstract, op,N abs, n,N );
(4) if res 6= ǫ then return res;

(5) var vi := min(N abs), vn := var(n);
(6) N abs := N abs \ vi;

/∗ Variable to be abstracted is located below vi ∗/
(7) while vi > min(N ) do N := N \ min(N ); end

/∗ Reached variable to be abstracted ∗/
(8) if vn ≥ vi then

/∗ Variable to be abstracted is 0-sup. ∗/
(9) if vi 6= vn then

(10) t := 0-node;
(11) e := pZAbstract(op,N abs, n,N );

/∗ Reached node carrying variable to be abstracted ∗/
(12) else

(13) t := pZAbstract(op,N abs, then(n),N );
(14) e := pZAbstract(op,N abs, else(n),N );

/∗ Merge collapsing paths ∗/
(15) res := pZApply(op, t,N , e,N );

/∗ Reached node carrying variable not to be abstracted ∗/
(16) else

(17) t := pZAbstract(op,N abs, then(n),N );
(18) e := pZAbstract(op,N abs, else(n),N );
(19) res := getUniqueZMTBDDNode(vn, t, e);

/∗ Insert result into pZAbstract-cache and terminate recursion ∗/
(20) cacheInsert(pZAbstract, op,N abs, n,N , res);
(21) return res;

(2) the set of variables to be abstracted from (Vabs),

(3) the root node of the pZDD to be manipulated (n), and

(4) the set V representing the set of variables of the pZDD to be manipulated.

In line 1-2 one tests if the terminal condition for terminating the recursion is satisfied.

If this is the case, a respective node is returned, otherwise one tests at first if a result

from a previous recursion is known (line 3-4). In case the cache-lookup does not deliver

such a result, the recursion is entered, where three different cases must be covered (line

6-19):

(1) The pseudo-code of line 7 simply causes a skipping of levels referring to 0-sup.

variables not to be abstracted from, since the resulting pZDD does not need to

contain here any node as well.
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(2) The pseudo-code of line 8-15 covers the case, that the variable to be removed is

0-sup. or appears in the current path.

(3) The pseudo-code of line 16-19 covers the case, that the algorithm reached a node

referring to a variable not to be abstracted.

As one may note, in line 15 the pZApply and not the ZApply-algorithm is called for

merging the collapsing paths, even though the pZDD-graphs to be merged are defined

on the same set of variables. This is correct, since in case of non-zero-preserving opera-

tors it might be necessary to allocate nodes for variables which were previously omitted.

However, in case of zero-preserving operators, one may call here the ZApply-algorithm

for merging collapsing paths, rather than calling the more generic pZApply-algorithm

(line 2 and 15).

5 Applications

5.1 Implementation

Jinc [8,18] is an object-oriented BDD library written in C++. Its key features can be

summarized as follows:

(1) Clean API to reduce errors while implementing symbolic algorithms and to make

source code more readable.

(2) All data-structures needed for an efficient BDD library (such as unique tables, hash

tables, variables, memory pool, ...) are implemented as templates and can be used

for regular and weighted variants. This allows an easy handling, when implementing

new types of DDs.

(3) Advanced techniques for memory management, where Jinc uses a memory pool in

order to prevent memory fragmentation.

(4) For increasing the hits in the table of pre-computed results, the package uses a

delayed garbage collection. Like in other BDD packages the reference count is used

to identify nodes to be deleted, but contrary to other packages we solely mark the

root nodes and delay the recursive marking of their subgraphs. This comes at the

cost that the number of dead nodes cannot be used to start the garbage collection.

Instead, the number of deleted functions (or root nodes) is used to decide if the

garbage collection should be executed. The advantage of doing so is that deleting

and reusing the DD can be performed in constant time. As a result, the computed

tables are deleted less frequently which leads to an increased number of hits in the

computed table.

(5) Insertion of variables at any position of the variable ordering.

(6) All reordering methods are based on the swap of two neighboring variables. This

enables all reordering methods for a new DD type to be implemented as soon as

the swap function is available.

When implementing pZDDs within Jinc, we decided to store the set of variables for

each pZDD object as a cube set, represented by its own BDD. As a consequence, the

algorithms operating on pZDDs not only traverse the respective graphs, but also have

to traverse the BDDs representing the sets of function variables. This approach is ef-

ficient because it supports the existence test in linear time, i.e. it can be checked in

linear time if a variable is inside a cube set. But in our implementation the variable
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set for functions computed on the basis of the pZApply-algorithm may not be minimal.

The reason for this is the fact that we assign the union of the set of function variables

of the operand pZDD-objects as set of function variables to the newly generated pZDD

object. It might occur, that some of the function variables are not essential for the

resulting function and could therefore be eliminated from the set of function variables.

Thus implementing pZDDs and their algorithms was achieved in a direct way, since the

union of two cube sets can be computed very efficiently by standard BDD operation,

where the resulting BDD is not only passed to the pZDD manipulating algorithm as

input parameter, but also serves as representation of the set of function variables of

the resulting pZDD. –In case of co-factor and exists calculation, the set of variables of

the ZDD to be generated can be obtained by applying a set-minus on the resp. sets of

variables.– In addition to this, also the set of function variables of the operand pZDDs

must be passed to the pZDD-manipulating algorithm, so that the appropriate case

distinction for the next recursions can be made, i.e. mainly to decide if the recursive

behavior is as usual, or if a 0-sup.- or dnc-semantics for the current variable is appli-

cable.

One may note that we previously implemented pZDDs within Cudd. However, integrat-

ing this implementation into the Prism tool [19], which makes use of Cudd, seems to be

cumbersome, as Prism does not export variable sets for the symbolic structures to be

generated during state graph generation. Therefore we decided to start from scratch,

which solely required the implementation of pZDDs within Jinc and a replacement of

Cudd in our symbolic analyzer for Markov models. Furthermore, this procedure al-

lowed us also to directly benchmark pZDDs with the tool Promoc [20], as this (fully)

symbolic probabilistic model checker is based on the Jinc package and the Prism input

language and its symbolic semantics.

5.2 pZMTBDDs in the context of Markov reward models

In the past decade, DDs have been successfully employed for efficiently representing

stochastic state graphs (SG). Many different approaches have been proposed for ef-

ficiently generating such symbolic representations from high-level model descriptions,

such as Generalized Stochastic Petri Net [3], Stochastic Process Algebra [7], among

others. Roughly speaking, the proposed schemes can be divided into the classes of

monolithic - and compositional approaches. –Applying a compositional scheme means

that the SG of the overall model is constructed from smaller components, commonly

from symbolic representations of the SGs of submodels or partitions (submodel- or

partition-local SGs).– Compositionality turned out to be crucial, since (a) it reduces

the runtime, as not all sequences of independent activities have to be extracted explic-

itly and (b) it induces regularity on the symbolic structures and thus reduces the peak

memory consumption.

[11] introduced the activity-local SG generation for efficiently generating state graphs

(SGs) or activity-labeled continuous time Markov chains (CTMCs) as underlying high-

level model descriptions. For representing such low-level models, [11] employed pZMTB-

DDs, where as high-level descriptions Markovian extensions of well-known model de-

scription techniques as mentioned above were considered. For numerically computing

the measures of interest specified on high-level models, the latter must be transformed
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(A) Model features and data of MTBDD based analysis

number of MTBDD nodes
N states trans

tg in sec.
size(ZT ) size(ZR) szpk

Kanban
6 1.1261 E7 1.1571 E8 1.1441 4.9664 E4 2.9280 E3 1.4937 E6
8 1.3387 E8 1.5079 E9 5.2123 1.2413 E5 6.9620 E3 5.9383 E6
10 1.0059 E9 1.2032 E10 16.3570 2.1054 E5 1.1244 E4 1.5159 E7
12 5.5199 E9 6.8884 E10 51.1752 3.2744 E5 1.6842 E4 2.1841 E7

FMS
6 5.3777 E5 4.2057 E6 0.90006 9.0190 E4 4.559 E4 9.7921 E5
8 4.4595 E6 3.8534 E7 2.52816 2.2991 E5 1.0554 E4 2.5860 E6
10 2.5398 E7 2.3452 E8 5.27633 4.1550 E5 1.7502 E4 4.9215 E6
12 1.11415 E8 1.07892 E9 9.36458 6.7230 E5 2.6372 E4 8.2828 E6

(B) Data of pZMTBDD based analysis and ratios

number of ZDD nodes ratios
N tg in sec. size(ZT ) size(ZR) szpk rtg rZT

rZR
rpk

Kanban
6 0.74005 3.7960 E3 2.6100 E2 6.0926 E5 1.55 13.08 11.22 2.45
8 2.80017 6.1420 E3 4.0200 E2 2.1885 E6 1.86 20.21 17.32 2.71
10 8.22451 9.0550 E3 5.5800 E2 6.2463 E6 1.99 23.25 20.15 2.43
12 23.12544 1.2459 E4 7.3900 E2 1.5347 E7 2.21 26.28 22.79 1.42

FMS
6 0.37202 1.7406 E4 6.0600 E2 2.6896 E5 2.42 5.18 7.52 3.64
8 0.91606 3.7688 E4 7.3900 E2 5.7405 E5 2.76 6.10 14.28 4.50
10 1.69611 6.9753 E4 1.6270 E3 1.0259 E6 3.11 5.96 10.76 4.80
12 2.80418 1.1589 E5 7.3900 E2 1.6665 E6 3.34 5.80 11.30 4.97

Table 1 Data for the two benchmark models

into a continuous time Markov chain (CTMC), annotated with reward values. If a

high-level model description technique does not possess a symbolic semantics, symbolic

representations of annotated CTMCs can only be deduced from a high-level model de-

scription by explicitly executing the high-level model and encoding of the detected

state-to-state transitions. For doing this in a memory and run-time efficient manner,

the activity-local SG generation scheme exploits local information of high-level model

constructs only. I.e. for keeping explicit SG generation and encoding of transitions as

partial as possible, the scheme exploits a dependency relation on the activities and

partitions the set of transitions into subsets, each containing the transition asscociated

with a specific activitiy. The symbolic representations of the obtained activity-local

transition systems depend hereby solely on the binary variables encoding those state

counters which are connected to the respective activity (= dependent state variables

(SVs)). A symbolic representation of the overall CTMC is constructed by applying

a symbolic composition scheme on the previously generated activity-local structures,

yielding the potential CTMC. For extracting the reachable states, one must execute

symbolic reachability analysis. Since symbolic composition and symbolic reachability

analysis are the most time consuming part (70−99% of the CPU time) of the activity-

local scheme, this gives an adequate framework for benchmarking pZMTBDDs. We

implemented the activity-local scheme within the Möbius modelling framework [17],
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nodes savings run-time savings
n k states

MTBDD pZDD in %
n k

MTBDD pZDD in %
E[π]

8 6 2529 18274 12437 31.94 8 4 42 33 21.42 113
8 7 12673 35303 24183 31.50 8 5 189 111 41.27 66
8 8 395 8703 5615 35.48 8 6 54 35 35.19 44

8 7 91 49 46.15 30
10 6 3941 31888 23823 25.29 8 8 12 10 16.67 20
10 7 19761 66085 45873 30.58
10 8 6931 43466 31134 28.37

12 6 833 20415 13638 33.20
12 7 28417 101605 64910 36.12
12 8 2815 42024 28462 32.27

Table 2 Comparison of MTBDDs and pZDDs with the UMTS model

where our implementation allows us to use either MTBDDs or pZMTBDDs. This makes

it possible not only to use the same number of variables with both data structures,

but also to maintain the same variable ordering when constructing the symbolic rep-

resentations. For the experiments, several benchmark models from the literature were

analyzed. Here we present results for the Kanban model and the Flexible Manufac-

turing System (FMS) model, both included in the standard case studies of the Prism

tool [19]. Tab. 1 (A) gives the number of states (states) and transitions (trans) of the

respective CTMC. These characteristic figures depend on the model scaling parameter

N , which is also given. In the right part of Tab. 1 (A) and in the left part of Tab. 1

(B) the time required for generating the symbolic structures (tg), as well as the num-

ber of nodes within the symbolic structures are given, where ZR represents the set of

reachable states, ZT the CTMC and szpk denotes the peak number of nodes allocated

during the construction process. Note that the nodes of the cube set are also counted

to the size of the pZMTBDDs. The right part of Tab. 1 (B) finally gives the respective

ratios for comparing MTBDD and pZMTBDDs, where we normed everything to the

figures of our new data structure. As illustrated by these figures, employing pZMTB-

DDs clearly reduces the run-time and space requirement.

Once the CTMC is generated, the next step in the analysis is the computation of

transient or steady-state probabilities. In [12] we adapted the hybrid solution method

[16] to ZMTBDDs for solving CTMCs in a run-time and memory efficient way. When

applying a numerical solution method such as Jacobi, pseudo Gauss-Seidel or uni-

formization, the sparsity of ZMTBDDs pays off another time, leading to a clear reduc-

tion of CPU-time consumptions by a factor between 2 and 3. As a consequence, when

employing ZMTBDDs instead of MTBDDs, performance measures for the FMS model

and a scaling parameter N = 12 can be computed in ≈ 4h instead of ≈ 12h (for further

details please refer to [12]).

5.3 pZDDs in the context of probabilistic model checking

The model that is used for this benchmark study is a simplification of the UMTS

system. It represents the mechanism to request validation keys for different domains

(like telephone or internet access). The model also identifies if a synchronization failure

21



occurs, i.e. if a used key is older than the stored key in the UMTS card. The system

size depends on the number of slots n on the UMTS card, as well as on the number

of keys k that are requested at a time. (Note, that the model size collapses if k is a

divider of n.) We specified this model by employing the symbolic probabilistic model

checker Promoc [20], which is based on the Prism input language and the Jinc package.

For probabilistic model checking, a symbolic representation of a transition matrix is

directly derived from the (Prism) model specification. Each matrix entry mi,j hereby

defines the transition probability that the system moves from state i to state j. For

investigating the stationary probability of states with a given property one needs to

solve a system of linear equations and to calculate the expected number of requests

(E[π]) to reach a synchronization failure. The benchmark results in Table 2 show that

pZMTBDDs clearly outperform the regular MTBDDs in both size and run-time.

6 Conclusion

In this paper we extended ZBDDs [14] to the multi-terminal case, in order to employ

the 0-sup.-reduction rule in the context of symbolic, quantitative analysis of systems.

For efficiently working with ZDDs defined on differing sets of function variables we

introduced the concept of partially shared ZDDs and described the resp. algorithms

for manipulating them. This not only allowed us to implement pZDDs within standard

shared DD-environments, such as Cudd [25] or Jinc [8], but also supports the appli-

cation of non-zero-preserving operators to them. The efficiency of the introduced ap-

proach was then demonstrated by analyzing various case studies, where pZDDs turned

out to require less memory space and less CPU time if compared to the standard type

of MTBDDs. The superior performance of pZDDs can be explained by the following

reasons: (a) It is typical that matrices derived from high-level model descriptions are

sparsely populated. (b) Many positions of the bit strings encoding system states (and

thus referring to the indices of reachable states) carry the value 0, and ZDDs are very

efficient at representing sets of such bit strings. (c) The concept of partially shared

ZDDs avoids the insertion of dnc-nodes. It therefore keeps the symbolic structures

compact and even allows to represent different functions by the same graph. The size

reduction of the symbolic structures leads to run-time advantages, where it was found

that the overhead imposed by the handling of sets of (function) variables is of minor

concern.
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